♦ OBJETIVO GABARITO DO TC 2 – 2ª Série do Ensino Médio

QUÍMICA

FRENTE 1

MÓDULO 9 FORÇAS INTERMOLECULARES

- 1) a) diplo dipolo
 - b) ligação de hidrogênio
 - c) dipolo instantâneo dipolo induzido
 - d) ligação de hidrogênio
 - e) dipolo dipolo
 - f) dipolo instantâneo dipolo induzido
- 2) dipolo instantâneo dipolo induzido
- H Cl: ligação covalente polar (intramolecular) 7
 - 2) BaBr₂: ligação iônica 5
 - 3) NH₃: pontes de hidrogênio (intermolecular) 8
 - CCl₄: força de van der Waals (intermolecular) 6

Resposta: A

4) As bases nitrogenadas estão associadas por ligações ou pontes de hidrogênio.

N — H N

Resposta: E

- 5) I) ponte de hidrogênio
 - II) forças de van der Waals
 - III) ligação covalente
 - IV) ligação iônica
- 6) A

MÓDULO 10 ESTRUTURA DAS SUBSTÂNCIAS E PROPRIEDADES FÍSICAS

- 1) I) Correta.
 - II) Correta. Quanto maior a massa molecular, maior a forca de van der Waals.
 - III) Correta. Quanto maior a força intermolecular, mais elevado será o ponto de ebulicão.

Resposta: E

 CH₄ - apolar - força entre dipolo instantâneo - dipolo induzido (força fraca)

H₂S – polar – força entre dipolo – dipolo (mais forte que a força entre dipolo instantâneo dipolo induzido).

H₂O – polar – ligação de hidrogênio (mais forte que a força dipolo – dipolo).

3) A

4) II, maior tamanho

5) $F \cdot F \rightarrow 2 F$

É necessário romper ligação covalente. Resposta: C

- O1) Verdadeira. A partir do 3º período as moléculas não se unem por ponte de hidrogênio.
 - 02) **Verdadeira**. Ambos estabelecem ligação de hidrogênio.
 - 04) Verdadeira.
 - 08) Verdadeira.
 - 16) Verdadeira.

Soma: 31

MÓDULO 11 ESTRUTURA DAS SUBSTÂNCIAS E PROPRIEDADES FÍSICAS (CONT.)

- 1) a) intermolecular
- b) polar
- c) apolar
- d) água
- 2) CCl_A , apolar
- 3) C
- Tanto a água como o açúcar estabelecem ponte de hidrogênio.

Resposta: E

- 5) I) N₂ e O₂ são substâncias apolares
 - II) Graxa ou óleo são substâncias apolares.
 - III) O enxofre (S₈, apolar) é solúvel em sulfeto de carbono (CS₂, apolar) e insolúvel em água (polar).
- HCl, polar, é bastante solúvel em água, também polar.

Resposta: D

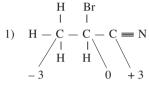
MÓDULO 12 FORÇAS INTERMOLECULARES: EXPERIÊNCIAS

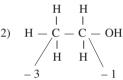
 Quando há, na molécula, H ligado a F, O ou N, a força intermolecular é a ponte de hidrogênio.

Resposta: E

- 2) a) Acetona: força entre dipolos permanentes Etanol: ponte de hidrogênio
 - b)Menor
- Tanto água como amônia são polares e estabelecem ponte de hidrogênio. Resposta: D

 Tubo I: etanol e água, líquidos miscíveis, pois ambos são polares e estabelecem ponte de hidrogênio.


Tubo II: água e gasolina, líquidos imiscíveis, pois a água é polar e a gasolina é apolar. A água é a fase inferior, porque é mais densa que a gasolina.

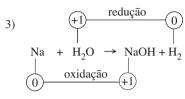

Tubo III: tetracloreto de carbono (apolar) e água (polar), líquidos imiscíveis. O ${\rm CC}l_4$ é a fase inferior, pois é mais denso que a água.

Resposta: C


- 5) B
- 6) B

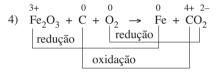
MÓDULO 13 REAÇÕES DE OXIDORREDUÇÃO: NÚMERO DE OXIDAÇÃO

- 3) Na₃N: 3 (+1) + x = 0 : x = -3 NH₄Cl: x + 4 (+1) + (-1) = 0 : x = -3 KNO₂: (+1) + x + 2 (-2) = 0 : x = +3 Ca(NO₃)₂: (+2) + 2x + 6 (-2) = 0 : x = +5 Resposta: D
- 4) K_2^{6+} H_2^{6+} H_2^{6
- 5) CH_2O_2 : x + 2 (+ 1) + 2 (- 2) = 0 $\therefore x = + 2$ CaC_2 : + 2 + 2x = 0 $\therefore x = -1$ CO_2 : x + 2 (- 2) = 0 $\therefore x = + 4$ CO: x + (- 2) = 0 $\therefore x = + 2$ CH_4 : x + 4 (+ 1) = 0 $\therefore x = -4$ Resposta: C
- 6) A 7) A

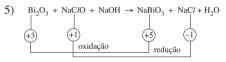

Resposta: D

MÓDULO 14 CONCEITO DE OXIDAÇÃO, REDUÇÃO, OXIDANTE E REDUTOR

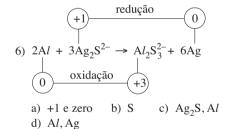
- Não ocorre variação de Nox na reação d.
 H₂S + Pb(NO₃)₂→PbS+HNO₃


Resposta: D

2) $N_2 \rightarrow NH_3 \rightarrow NO \rightarrow NO_2 \rightarrow HNO_3$ Resposta: D



oxidante: H₂O redutor: Na


Resposta: C

Respostas: 1) Correta 2) Errada 3) Correta

Resposta: A

7) D 8) B

MÓDULO 15 QUÍMICA DA SOBREVIVÊNCIA: A LITOSFERA

- 1) Em porcentagem em massa, os quatro elementos mais abundantes na crosta terrestre são O (47%), Si (28%), Al (8%) e Fe (5%).

 Resposta: D
- resposia.
- 2) D
- O mármore, CaCO₃, é uma rocha metamórfica.
 Resposta: B

- 4) I) Correto.
 - II) Correto.
 - III) *Correto*. Cada sólido é uma fase. Resposta: E
- 5) Corretos 1, 2 e 3

MÓDULO 16 METALURGIA DO ALUMÍNIO E DO COBRE

- Itens certos: 1, 2 e 4
 Item errado: 3
 As ligas metálicas possuem propriedades físicas diferentes.
- Os fatores que influem no custo de produção do alumínio são: energia elétrica e transporte do minério.
 A energia elétrica não influi na escolha

preço é o mesmo em qualquer região. Logo, o transporte do minério será o fator determinante para escolha do local de produção do alumínio. Sendo assim, para evitar transportar parte do minério (mais de 50%) que não resulta em alumínio, as indústrias de alumínio devem situar-se próximas às jazidas.

uma vez que, conforme o enunciado, seu

Resposta: D

3)
$$2PbS + 3O_2 \xrightarrow{\Delta} 2PbO + 2SO_2$$

 $PbO + CO \xrightarrow{\Delta} Pb + CO_2$

Resposta: D

- 4) (
- 5) $Cu_2S + O_2 \rightarrow 2Cu + SO_2$
- 6) O carvão é reagente e não catalisador. 2CuO + C → 2Cu + CO₂ preto preto vermelho

O gás carbônico reage com água de cal, produzindo um precipitado de CaCO₃.

$$CO_2(g) + Ca(OH)_2(aq) \rightarrow$$

$$\rightarrow$$
 CaCO₃(s) + H₂O(l)

Resposta: B

FRENTE 2

MÓDULO 17 VELOCIDADE (RAPIDEZ) DE UMA REAÇÃO

- 1) C
- 2) $N_2H_4 + 2I_2 \rightarrow 4HI + N_2$ 1 mol - 2 mol - 4 mol - 1 mol $v_1 = \frac{v_2}{2} = \frac{v_3}{4} = \frac{v_4}{1}$

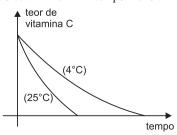
Resposta: B

3)
$$2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2$$

 $2.30\text{g} - 28\text{g}$
 $30\text{g} - x$
 $x = 14\text{g}$

20 minutos — 14g 1 minuto — y y = 0.7g0.7g/min Resposta: C

4) $v = \frac{-(0.4 - 7.2) \text{ mol}}{(5 - 1) \text{ min}}$: v = 1.7 mol/min


massa consumida em 1 minuto 10 mol - 7,2 mol = 2,8 mol 1 mol - 46g 2,8 mol - x x = 128,8gResposta: C

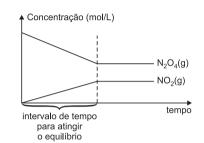
MÓDULO 18 TEORIA DAS COLISÕES

- 1) A
- 2) a) 30 b) 50 c) -20 d) +20
- 3) C
- (1) Errado. A primeira reação é mais lenta porque tem maior energia de ativação.
 - (2) Correto.
 - (3) Correto.
 - (4) Correto.
 - (5) Correto.
- 5) Corretas: 01, 02 (soma: 03)

MÓDULO 19 FATORES QUE INFLUEM NA VELOCIDADE DAS REAÇÕES

- Quanto maior a superfície de contato (pó) e quanto maior a temperatura, mais elevada será a velocidade da reação. Resposta: B
- 2) (1) F (2) V (3) V (4) F (5) V
- 3) C
- 4) A reação a 25°C é mais rápida e chega ao seu final em um tempo menor.

MÓDULO 20 INFLUÊNCIA DO CATALISADOR E DA CONCENTRAÇÃO DOS REAGENTES


- Diminui 1)
- 2) B
- Com ou sem catalase, a concentração final de H₂O₂ será a mesma. Na presença de catalase, como a reação é mais rápida, o tempo para atingir essa concentração final é menor. Resposta: C
- Quanto menor a superfície de contato entre os reagentes (em lâmina), quanto menor a concentração dos reagentes (0,5 mol/L), e quanto menor a temperatura (25°C), menor será a rapidez da reação. Resposta: C
- 5) $v = k [X] \cdot [Y]^2$ $3 = k \cdot 1 \cdot 2^2$ k = 0.75 $0.75L^2/\text{mol}^2$. min Resposta: D
- a) Guldberg-Waage b) $v = k [N_2] [H_2]^3$ $v_1 = k \cdot x \cdot y^3$ $v_2 = k \cdot (2x) (2y)^3 = 16 k x y^3$ c) $v_2 = 16 v_1$

MÓDULO 21 MECANISMO DE UMA REAÇÃO QUÍMICA

- II) para I : [B] dobra \rightarrow v dobra III) para I: [A] dobra → v quadruplica $v = k \cdot [A]^2 \cdot [B]$
- 2) [A] dobra \rightarrow v quadruplica com [B] cons-[B] dobra → v não se altera com [A] constante $v = k [A]^2$
- 3) [A] dobra → v quadruplica [B] varia \rightarrow v constante $v = k \cdot [A]^2 \cdot [B]^0 = k \cdot [A]^2$ Resposta: D
- 4) lenta
- Etapa lenta: $X + Z \rightarrow P :: v_4 = v_2$ Resposta: B

MÓDULO 22 AS REAÇÕES NÃO SE COMPLETAM. CONCEITO DE EQUILÍBRIO QUÍMICO

- 01) Correto 1) 04) Correto
- 02) Correto
- 16) Falsa
- 08) Correto
- Soma: 15
- 2) O equilíbrio é atingido quando as velocidades ficam iguais. Resposta: A
- C 3) 4)

Único que corresponde a um sistema fechado é o da alternativa b.

$$CO_2(g) \rightleftharpoons CO_2(aq)$$

 $CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$
Resposta: B

Alcançando o equilíbrio químico, iremos encontrar no sistema moléculas dos reagentes N_2 () e H_2 () e do produto NH3

Resposta: E

MÓDULO 23 CONSTANTE DE EQUILÍBRIO

1) a)
$$K_C = \frac{[COCl_2]}{[CO] [Cl_2]}$$

b)
$$K_C = \frac{[NO]^2[O_2]}{[NO_2]^2}$$

2) a) $[SO_2] = \frac{2 \text{ mol}}{2L} = 1 \text{ mol/L}$

b)
$$[O_2] = \frac{6 \text{ mol}}{2L} = 3 \text{ mol/L}$$

c)
$$[SO_3] = \frac{4 \text{ mol}}{2L} = 2 \text{ mol/L}$$

d)
$$K_c = \frac{[SO_3]^2}{[SO_2]^2 \cdot [O_2]} = \frac{(2)^2}{(1)^2 \cdot 3} = \frac{4}{3}$$

4)
$$K_p = \frac{p_{N_2} \cdot p_{O_2}}{p_{NO}^2} = \frac{0.02 \cdot 0.02}{0.2^2} = 0.01$$

Resposta: C

5)
$$K_c = \frac{[IBr]^2}{[I_2] \cdot [Br_2]} = \frac{8^2}{2 \cdot 1} = 32$$

6) a)
$$K_1 = \frac{[NO_2]^2}{[NO]^2 \cdot [O_2]}$$

$$\therefore [NO]^2 \cdot [O_2] = \frac{[NO_2]^2}{x}$$

b)
$$K_2 = \frac{[N_2O_4]}{[NO_2]^2} \therefore [N_2O_4] = y \cdot [NO_2]^2$$

c)
$$K_3 = \frac{[N_2O_4]}{[NO]^2.[O_2]}$$

d)
$$K_3 = \frac{y [NO_2]^2}{\frac{[NO_2]^2}{x}} = xy$$

e) Resposta: A

1)

MÓDULO 24 CÁLCULO DAS QUANTIDADES NO **EQUILÍBRIO**

	N ₂ O ₄ (g) =	⇒ 2NO ₂ (g)
início	10 mol	
reage e forma	2 mol	4 mol
equilíbrio	8 mol	4 mol

2)
$$K_C = \frac{[NO_2]^2}{[N_2O_4]}$$

$$K_C = \frac{4^2}{8} \therefore K_C = 2$$

3)
$$[] = \frac{n}{V} (\text{mol/L})$$

	$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$		
início	1,00	0	0
reage e forma	0,47	0,47	0,47
equilí- brio	1,00-0,47= = 0,53	0,47	0,47

$$K_c = \frac{[PCl_3] \cdot [Cl_2]}{[PCl_5]}$$

$$K_c = \frac{0.47 \cdot 0.47}{0.53} = 0.42$$

Resposta: C

		`
- 2	1	١
-		,

		$2HBr(g) \stackrel{\rightarrow}{\rightleftharpoons} H_2(g) + Br_2(g)$		
	início	8 mol	0	0
	reage e forma	4 mol	2 mol	2 mol
	equilí- brio	4 mol	2 mol	2 mol
	concen- tração	2 mol/L	1 mol/L	1 mol/L

$$K_c = \frac{[H_2] \cdot [Br_2]}{[HBr]^2}$$

$$K_c = \frac{1 \cdot 1}{(2)^2} = \frac{1}{4}$$

Resposta: C

5)		$H_2(g)$ + $I_2(g) \rightleftharpoons 2$		2HI(g)
	início	1 mol/L	1 mol/L	0
	reage e forma	X	X	2x
	equilí- brio	1 – x	1 – x	2x

$$K_c = \frac{[HI]^2}{[H_2] \cdot [I_2]}$$

$$49 = \frac{(2x)^2}{(1-x)(1-x)}$$

$$7^2 = \frac{(2x)^2}{(1-x)^2} :: \pm 7 = \frac{2x}{1-x}$$

$$x = \frac{7}{5} > 1 \text{ (impossível)}$$

$$x = \frac{7}{9} \therefore [HI] = \frac{14}{9} \text{ mol/L}$$

Resposta: B

$$K_c = \frac{[HBr]^2}{[H_2] \cdot [Br_2]} \therefore K_c = \frac{(0.02)^2}{(0.08 \cdot (0.08))}$$

$$K_C = 3,125$$

7) B

MÓDULO 25 EQUILÍBRIO IÔNICO

 Na expressão do K_c não entra sólido. Resposta: E

2)
$$\text{HNO}_2 \rightleftharpoons \text{H}^+ + \text{NO}_2^-$$

$$\text{K}_{\text{a}} = \frac{[\text{H}^+] [\text{NO}_2^-]}{\text{HNO}_2}$$

- 3) Maior
- 5) I) Correto: maior $K_a \Rightarrow$ ácido mais forte
 - II) Falso: quanto maior o valor de K_a, maior a força do ácido e mais ionizado ele será (HF)

4) A

III) ${\bf Correto}$: quanto menor o valor de ${\bf K_a}$ menor a concentração de íons ${\bf H^+}$ na solução.

Resposta: D

- 6) HNO₂ é mais forte (maior K_a) Resposta: D
- Quanto maior a constante de ionização, mais forte o ácido, isto é, mais intensa a ionização.

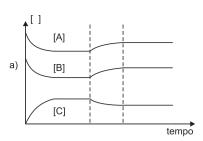
HBr

H

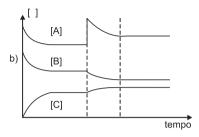
Resposta: B

MÓDULO 26 DESLOCAMENTO DE EQUILÍBRIO QUÍMICO

- a) Desloca para a direita.
 - b) Desloca para a esquerda.
 - c) Desloca para a esquerda.
- 2) a) Desloca para a direita.
 - b) Desloca para a esquerda.
- 3) a) Desloca para a esquerda.
 - b) Desloca para a direita.
- A reação que produz H₂(g) é endotérmica (ΔH > 0)


O aumento da temperatura faz o equilíbrio deslocar no sentido da reação endotérmica (produção do H₂).

Resposta: C


) K_c diminui, pois a reação direta é exotérmica.

$$K_C = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3}$$

O aumento de temperatura desloca o equilíbrio para a esquerda. $[\mathrm{NH_3}]$ diminui, enquanto $[\mathrm{N_2}]$ e $[\mathrm{H_2}]$ aumentam. Logo, $\mathrm{K_C}$ diminui.

6)

MÓDULO 27 DESLOCAMENTO DE EQUILÍBRIO QUÍMICO. EXERCÍCIOS

 Aumentando a produção de hemoglobina, o equilíbrio será deslocado para a direita, aumentando a produção de HbO₂, que carrega oxigênio até os tecidos.

Resposta: A

2)
$$PCl_3(g) + Cl_2(g) \xrightarrow{exo} PCl_5(g)$$

endo

- Aumentando-se a temperatura, desloca-se o equilíbrio no sentido da reação endotérmica ("para a esquerda"), diminuindo-se a quantidade de produto.
- Aumentando-se a concentração de PCl₅, desloca-se o equilíbrio "para a esquerda".
- Catalisador acelera reações, mas não desloca equilíbrio.
- Aumentando-se a pressão (ou diminuindo o volume), desloca-se o equilíbrio no sentido da reação que se dá com contração de volume ("para a direita").

$$\underbrace{\frac{\operatorname{PC}l_3(\mathbf{g}) + \operatorname{C}l_2(\mathbf{g})}{2\operatorname{V}}}_{2\operatorname{V}} \xrightarrow{} \underbrace{\frac{\operatorname{PC}l_5(\mathbf{g})}{\operatorname{IV}}}$$

⇒ forma-se mais produto

Resposta: D

3) H₃CCOOH

→ H⁺ + H₃CCOO⁻
adicionando

H₃CCOO⁻NH₄⁺

→ H₃CCOO⁺ NH₄⁺

[H₃CCOO⁻] aumenta

→ desloca o equilíbrio no sentido do H₃CCOOH.

A constante de ionização não se altera (só depende da temperatura).

O grau de ionização do ácido diminui. A concentração hidrogeniônica [H⁺] diminui.

Resposta: C

- 4) a) $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$
 - [H⁺] aumenta ⇒ desloca "para esquerda"
 - b) C₁₂H₂₂O₁₁ ⇒ não desloca o equilíbrio
 - c) $H_3CCOOH \Rightarrow H^+ + H_3CCOO^-$
 - [H⁺] aumenta ⇒ desloca "para a esquerda"
 - d) NaC $l \Rightarrow$ não desloca o equilíbrio
 - e) NaOH \rightarrow Na⁺ + OH⁻
 - ⇒ reação de neutralização

$$H^+ + OH^- \rightarrow H_2O$$

- ∴ [H+] diminui
- ⇒ desloca o equilíbrio "para a direita"

Resposta: E

- C 5)
- Vermelha 6)

$$NH_3 + H^+ \rightarrow NH_4^+$$

[H⁺] diminui → equilíbrio desloca para a direita

MÓDULO 28 pH E pOH

- a) Neutro
 - b) Básico
 - c) Ácido
- 2) Menor
- 01) Errada. (é o leite de magnésia)
 - 02) Errada.
 - 03) Errada. (ambos são meios ácidos)
 - 04) Errada.
 - 05) Correta.
- 4)
- $[H^+] = \alpha \cdot M : [H^+] = 0.4 \cdot 10^{-2} \cdot 0.25 :$ $[H^+] = 1.0 \cdot 10^{-3} \text{ mol/L}$

$$pH = -\log [H^+] : pH = -\log 10^{-3} :$$

pH = 3

Resposta: C

 $pH_{\Delta} = 1 \Rightarrow [H^+]_{\Delta} = 10^{-1} \text{ mol/L}$

$$pH_p = 2 \Rightarrow [H^+]_p = 10^{-2} \text{ mol/L}$$

$$\begin{split} \mathrm{pH_B} &= 2 \Rightarrow \mathrm{[H^+]_B} = 10^{-2} \; \mathrm{mol/L} \\ \frac{\mathrm{[H^+]_A}}{\mathrm{[H^+]_B}} &= \frac{10^{-1}}{10^{-2}} = 10 \end{split}$$

$$[H^+]_A = 10 [H^+]_B$$

Resposta: A

7)
$$K_a = \frac{[H^+].[BrO^-]}{[HBrO]}$$

- $\therefore 2.10^{-9} = \frac{[H^+]^2}{5.10^{-2}} \therefore$
- $\therefore [H^+]^2 = 1.0 \cdot 10^{-10}$

 $[H^+] = 1,0 . 10^{-5} \text{ mol/L}$

 \therefore pH = $-\log [H^+]$ \therefore pH = 5

Resposta: C

 $Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^{-}$ 0.002 mol/L 0,004 mol/L $[OH^{-}] = 4 \cdot 10^{-3} \text{mol/L}$:: $pOH = -\log [OH^{-}]$: $pOH = -\log 4 \cdot 10^{-3}$ $pOH = -(log 2^2 + log 10^{-3}) = -0.6 + 3$ pOH = 2.4pH + pOH = 14 : pH = 11,6Resposta: E

MÓDULO 29 A QUÍMICA DO ELEMENTO **CARBONO**

Equivalentes; quatro; equivalentes

2) a)
$$H - C - C - C - H$$

 $H - H - H$
 $H - H - H$

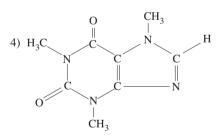
c)
$$Cl - CH_2 - CH_2 - CH_2 - C$$
 OH NH

3) C: carbono H: hidrogênio O: oxigênio N: nitrogênio

5)
$$H_{3}^{P}C_{Q}^{P}C_{H_{3}}^{P}C_{S}^{H_{3}}C_{Q}^{H}C_{S}^{H_{3}}C_{Q}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}C_{P}^{H_{3}}$$

MÓDULO 30 PESQUISA DO CARBONO (EXPERIÊNCIAS)

Um composto que apresenta átomo de carbono.


- 2) C
- a) $C_6H_{12}O_6 + 12CuO \rightarrow$ \rightarrow 6CO₂ + 6H₂O + 12Cu
 - b) H₂O condensação
 - c) CO₂; combustão da glicose
 - d) $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$
- a) Aquecimento sem ar o composto orgânico carboniza.
 - b) Aquecimento com ar produção de CO₂ na queima do composto orgânico.
- Todos os compostos orgânicos são constituídos pelo elemento carbono. Resposta: D
- Lixo inorgânico: cacos de vidro, latas de refrigerante, cacos de louça, alumínio. Resposta: A
- 8) C 7) C_8H_8

MÓDULO 31 CADEIAS CARBÔNICAS

- a) Homogênea, insaturada, ramificada
 - b) Homogênea, saturada, normal
 - c) Heterogênea, saturada, normal

Resposta: E

- I) Homogênea, saturada, alicíclica
 - II) Heterogênea, insaturada
 - III) Homogênea, insaturada, aromática
 - IV) Homogênea, insaturada, alicíclica

Fórmula: C₈H₁₀N₄O₂ Resposta: E

- a) 2C: et 3C: prop 4C: but 5C: pent 6C: hex 7C: hept 8C: oct 9C: non 10C: dec 11C: undec 12C: dodec
 - b) dupla: en tripla: in
- Mista (parte fechada e parte aberta), insaturada, heterogênea. Resposta: D
- 7) C

MÓDULO 32 FUNÇÕES ORGÂNICAS. HIDROCARBONETOS DE CADEIA ABERTA

- 1) a) heptano
- b) pent-2-eno
- c) hex-3-ino
- d) penta-1,3-dieno
- 2) $C_nH_{2n+2} \rightarrow C_8H_{18}$ Resposta: A
- 3) a) CH₄
- b) C₂H₆
- c) C₂H₄
- d) C_2H_2
- e) C₃H₄
- Resposta: D
- 4) a) but-2-eno
 - b) hex-1-eno
 - c) hexano
- 5) a) $CH_3 CH_2 CH_2 CH_2 CH_3$
 - b) $CH_3 CH = CH CH_3$
 - c) $CH_3 C \equiv C CH_2 CH_3$