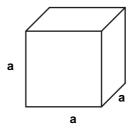


Calculando volumes

Para pensar

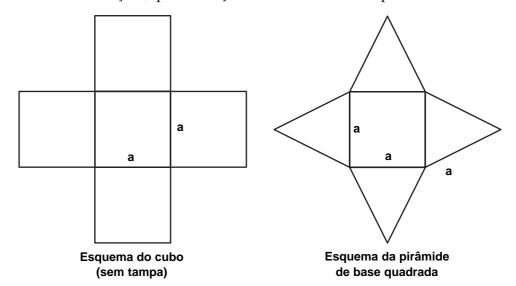
• Considere um cubo de aresta a:



Para construir um cubo cuja aresta seja o dobro de **a**, de quantos cubos de aresta **a** precisaremos?

- Pegue uma caixa de fósforos e uma caixa de sapatos. Considerando a caixa de fósforos como unidade de medida, qual o volume da caixa de sapatos?
- Com cartolina, ou algum outro papel encorpado, construa um cubo e uma pirâmide de base quadrada de tal forma que:
 - a base da pirâmide seja um quadrado igual à face do cubo;
 - a altura da pirâmide seja igual à medida da aresta do cubo.

Nessas condições, qual a relação entre os volumes da pirâmide e do cubo?



Nossa aula

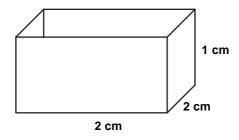
Na Aula 15, estudamos que os objetos têm área, volume e forma. Vimos também que existem objetos com mesmo volume e formas diferentes.

Nesta aula, estudaremos um pouco mais esse assunto, aprendendo a calcular o volume de alguns sólidos. Mas, antes, veremos algumas situações que envolvem a idéia de volume e capacidade:

VOLUME DE	CAPACIDADE DE
 areia retirada de um rio entulho retirado de uma obra dejetos poluentes despejados nos rios, lagos ou mares 	uma garrafauma seringauma caixa d'águaar dos nossos pulmões

Medir o volume ou a capacidade de um objeto é saber a quantidade de espaço que ele ocupa ou de que dispõe para armazenar.

Para encher uma caixa d'água de 2 metros de comprimento por 2 metros de largura e 1 metro de profundidade, foram necessários 4.000 litros de água.

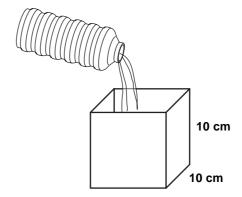


Volume da caixa d'água = $2 \text{ m x } 2 \text{ m x } 1 \text{ m} = 4 \text{ m}^3$ **Capacidade** da caixa d'água = 4.000 litros

As unidades de volume e de capacidade são estabelecidas pela seguinte relação:

$$1\ell = 1.000 \text{ cm}^3$$

Isto é, se tivermos um cubo oco com 10 cm de aresta, podemos colocar nesse cubo, exatamente, 1 litro de líquido (água, suco, leite, óleo etc.).



Outras relações, decorrentes dessa, também são bastante utilizadas:

$$1 \text{ m}^3 = 1.000 \, \ell$$

 $1 \text{ cm}^3 = 1 \text{ m} \ell$

As unidades de medida de volume fazem parte do Sistema Decimal de Medidas. As mais usadas são:

metro cúbico (m³) decímetro cúbico (dm³) centímetro cúbico (cm³) milímetro cúbico (mm³)

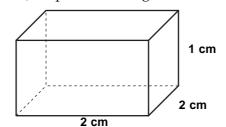
$$1 \text{ m}^3 = 1.000 \text{ dm}^3 = 1.000.000 \text{ cm}^3 = \dots$$

Desse modo são necessários 1.000.000 de cubinhos de 1 cm de aresta para formar um cubo de 1 m de aresta.

Volume do paralelepípedo

Paralelepípedo é o nome que a Matemática dá aos objetos que têm a forma de uma caixa de sapato, de um tijolo etc. Na verdade, a definição de paralelepípedo é mais geral. Se quisermos ser mais precisos, uma caixa de sapato é um paralelepípedo reto de base retangular.

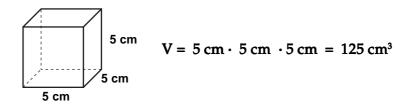
Na Aula 15, calculamos o volume do paralelepípedo, multiplicando suas dimensões (comprimento, largura e altura):



 $V = a \cdot b \cdot c$

EXEMPLO 3

Qual o volume do cubo cuja aresta mede 5 cm? (Lembre-se de que o cubo é um paralelepípedo cujas dimensões têm a mesma medida).



Imagine que esse cubo seja oco. Quantos litros de água seriam necessários para enchê-lo até a boca?

Como: $1 \ell = 1.000 \text{ cm}^3$

Então, fazendo uma regra de três, temos:

1 litro =
$$1.000 \text{ cm}^3$$

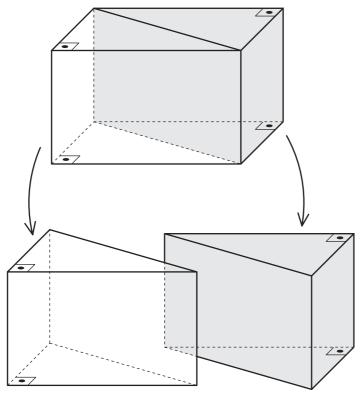
x litros = 125 cm^3

$$x = \frac{1\ 125}{1.000} = 0,125\ litros = 125\ mililitros$$

Podemos colocar **125** ℓ de água num cubo cujo volume é de 125 cm³.

Decompondo figuras sólidas

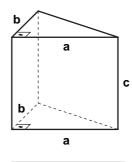
O paralelepípedo pode ser decomposto em duas outras figuras sólidas. Veja:



Acesse: # http://fuvestibular.com.br/

Cada um dos sólidos que surge pela decomposição deste paralelepípedo retângulo é um exemplo de prisma. Temos, em nosso caso, dois **prismas retos de base triangular**. Observe que, neste exemplo, a base de cada prisma é um **triângulo retângulo**.

O volume do prisma reto de base triangular é metade do volume do paralelepípedo. Portanto, o volume do prisma reto de base triangular é:

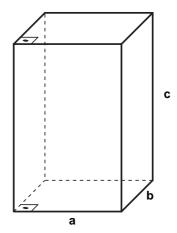


$$V = \frac{a \cdot b \cdot c}{2}$$

Note que o paralelepípedo também é um prisma reto, porém de base retangular.

Para obter o volume de um prisma com uma base qualquer multiplicamos a **área da base** pela **altura**. Por exemplo:

Prisma reto de base quadrangular(ou paralelepípedo):



Volume = área da base x altura

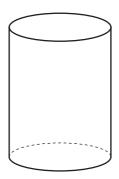
$$V = (a.b).c$$

$$V = a \cdot b \cdot c$$

que é o resultado já conhecido para o volume do paralelepípedo.

Volume do cilindro

Cilindro é o nome que a Matemática dá aos objetos que têm a forma de um latão de querosene ou de um cigarro. O cilindro é um sólido geométrico cujas bases são dois círculos iguais, como na figura:



O volume do cilindro pode ser determinado do mesmo modo que o volume do prisma reto:

Como a base do cilindro é um círculo, temos:

Área da base = área do círculo = πr^2 , onde r é o raio do círculo

Então, a área do cilindro pode ser expressa por:

A =
$$\Pi r^2$$
 . a

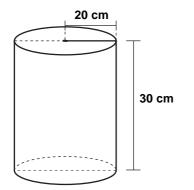
área do altura do

círculo cilindro

da base

EXEMPLO 4

Determine o volume de um cilindro de 30 centímetros de altura e cuja base tem 20 centímetros de raio.



Área da base =
$$\pi r^2$$

A = $\pi \cdot 20^2 = 3.14 \cdot 400$
A = 1.256 cm²

Volume = $1.256 \cdot 30 = 37.680 \text{ cm}^3$

Densidade de um corpo

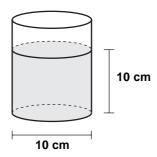
Na Aula 14, aprendemos que a **massa** de um objeto pode ser dada pelo seu peso. As unidades de medida de massa são o quilograma (**kg**) e o grama (**g**).

Podemos definir a densidade de um objeto (ou corpo) como o quociente entre sua massa e seu volume:

$$Densidade = \frac{massa}{volume}$$

Um método prático para determinar o volume de objetos, por exemplo o de uma pedra, é o seguinte:

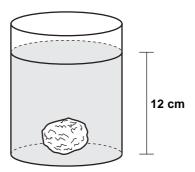
• Pegue um recipiente transparente, cujas medidas sejam fáceis de calcular. Por exemplo, um copo na forma de um cilindro.



• Encha-o com água e meça a altura que a água atingiu. No nosso exemplo, o volume de água é:

$$V = \pi \cdot 5^2 \cdot 10 = 3.14 \cdot 25 \cdot 10 = 785 \text{ cm}^3$$

• Em seguida, mergulhe a pedra na água e meça novamente a altura atingida.



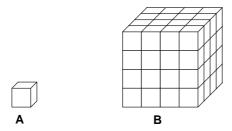
Volume =
$$\pi \cdot 5^2 \cdot 12 = 3.14 \cdot 25 \cdot 12 = 942 \text{ cm}^2$$

A diferença entre os dois resultados é o volume da pedra:

Volume da pedra = $942 - 785 = 157 \text{ cm}^3$.

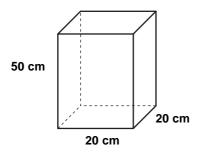
Exercícios Exercícios

De quantos cubinhos iguais a A precisamos para montar um cubo igual a B?



Exercício 2

Quantos litros de óleo cabem no galão abaixo?



Exercício 3

O que significa m³?

Exercício 4

Qual o volume de um bolo cuja altura é 5 cm e cujo diâmetro é 60 cm?

Exercício 5

Quantos litros de leite cabem em um galão cilíndrico de 20 cm de diâmetro e 60 cm de altura?

Exercício 6

Meça as arestas e calcule o volume de uma caixa de pasta de dentes.

Exercício 7

Calcule a capacidade, em metros cúbicos, de uma caixa que possa conter o fogão de sua casa.

Exercício 8

Calcule o volume de duas latas de óleo com formatos diferentes.