Aula 8 Síntese de proteínas

As proteínas que podem ser enzimas, hormônios, pigmentos, anticorpos, realizam atividades específicas no metabolismo dos seres vivos. São produzidas sob o comando do DNA.

Observe o exemplo abaixo:

Proteínas	Funções
Pepsina	Degração de proteínas
DNA- polimerase	Síntese de DNA
Hemoglobina	Transporte de oxigênio
Miosina	Contração muscular
Insulina	Controle da glicose

O albino não produz melanina, porque o seu gene apresenta algumas diferenças em relação ao gene das pessoas normais.

O gene determina o fenótipo do ser vivo, através da síntese de proteínas específicas.

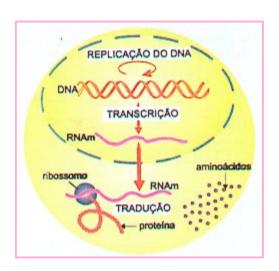
A informação para a síntese das proteínas está codificada no DNA; o código empregado nessa linguagem é conhecido por código genético.

No código genético, cada palavra é uma seqüência de 3 bases nitrogenadas – códon – que corresponde a um aminoácido. O código do DNA abaixo é transmitido para o RNA, conforme a tabela abaixo:

Código no DNA	Código no RNA	Aminoácidos	Abreviação do aminoácido
AAA	UUU	Fenilalanina	(Phe)
AAC, GAG	UUG, CUC	Leucina	(Leu)
CAA	GUU	Valina	(Val)
CCG, CCT	GGC,GGA	Glicina	(Gly)
СТТ	GAA	Ácido glutâmico	(Glu)
GTA	CAU	Histidina	(His)
TGT	ACA	Treonina	(Thr)
AGG	UCC	Serina	(Ser)
GGG	CCC	Prolina	(Pro)

Vários códigos podem codificar o mesmo aminoácidos (degenerado) e os mesmos aminoácidos são codificados pelos mesmos códons em todos os seres vivos (universal).

Etapas da síntese protéica					
Transcrição 🛇 formação do RNAm-> núcleo					
Ativação ligação dos dos \Diamond aminoácidos \Diamond citoplasma aminoácidos ao RNAt					
Tradução \lozenge encadeamento dos aminoácidos \lozenge ribossomos formando a proteína					


Transcrição

O RNAm sai do núcleo levando a mensagem do DNA para o citoplasma, onde se liga aos ribossomos.

Ativação dos aminoácidos

O RNAt captura aminoácidos dissolvidos no citoplasma e leva-os até os ribossomos. Em uma das extremidades do RNAt, aparece uma trinca de bases, chamada anticódon, que especifica o aminoácido.

Tradução

Nos ribossomos ocorre a entrada do RNAm, o primeiro códon ligase ao sítio um do ribossomo; em seguida, ocorre a ligação do anticódon do RNAt carregando o aminoácido correspondente, ocorrendo o encadeamento de vários aminoácidos, formando a proteína.

Importante

Observe a tabela abaixo, exemplificando a correspondência entre os códons do RNAm e os aminoácidos.

				Segunda letra			
		U C		А	G		
	U	UUU Phe UUC Leu UUA Leu	UCC Ser	UAU Tyr UAC Sem UAG sentido	UGU UGC Cys UGA → Sem sentido UGG → Tryp	UCAG	STATE OF STA
Primeira letra	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GluN	CGU CGC CGA CGG	UCAG	Terceira letra
Primei	Α	AUU Leu AUC Leu AUA Met	ACU ACC ACA ACG	AAU AspN AAC ASpN AAA Lys AAG	AGU Ser AGC Arg AGG Arg	U C A G	Torogi
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GIU	GGU GGC GGA GGG	UCAG	

Observe: Códon do DNA: C A A A A C T T

Anti - códons do RNAt: C A A A A C U U

3 bases especifica
$$= 1 \text{ c\'odon } --\lozenge$$
 nitrogenadas 1 aminoácidos

Exercícios

- 1) (FUVEST 2002) Os vírus
- a) possuem genes para os três tipos de RNA (ribossômico, mensageiro e transportador), pois utilizam apenas aminoácidos e energia das células hospedeiras.
- b) Possuem gene apenas para RNA ribossômico e para RNA mensageiro, pois utilizam RNA transportador da célula hospedeira.
- c) Possuem genes apenas para RNA mensageiro e para RNA transportador, pois utilizam ribossomos da célula hospedeira.

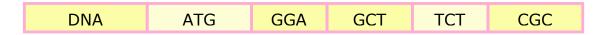
- d) Possuem genes apenas para RNA mesageiro, pois utilizam ribossomos e RNA transportados da célula hospedeira.
- e) Não possuem genes para qualquer um dos três tipos de RNA, pois utilizam toda a maquinaria de síntese de proteínas da célula hospedeira.
- 2) (Unicamp SP) Determine a seqüência de bases do DNA que transcreve o RNA mesageiro do seguinte peptídeo: Metionina Glicina Alanina Serina Arginina.

Utiliza os seguintes anticódons dos aminoácidos:

Alanina = CGA Glicina = CCU Serina = AGA Arginina = GCG Metionina = UAC

- 3) Qual a importância do estudo da síntese das proteínas?
- 4) (MACK SP) Uma molécula de RNA mensageiro com 90 bases nitrogenadas apresenta:
 - a) 90 códons e 90 nucleotídeos
 - b) 30 códons e 90 nucleotídeos
 - c) 30 códons e 30 nucleotídeos
 - d) 60 códons e 30 nucleotídeos
 - e) 30 códons e 60 nucleotídeos
 - 5) (PUC SP) "No citoplasma, um conjunto de códons (I), ligado a ribossomos, complementa-se com anticódons (II), possibilitando a síntese de uma enzima."

No trecho acima, o processo sucintamente descrito e os componentes I e II são denominados, respectivamente:


- a) Tradução, RNA mensageiro e RNA transportador.
- b) Transcrição, RNA transportador e RNA mensageiro.
- c) Transcrição, RNA mensageiro e RNA transportador.
- d) Tradução, RNA ribossômico e RNA mensageiro.
- e) Replicação, RNA ribossômico e RNA transportador.

Resolução dos exercícios

Resposta do exercício 1: d

Os vírus apresentam uma estrutura simples: capsídeo e material genético; sendo parasitas obrigatórios utilizam os ribossomos e o RNA transportador das células que eles parasitam.

Resposta do exercício 2:

Resposta do exercício 3: As proteínas são responsáveis pela estrutura e pelo funcionamento das células dos organismos, determinando o caráter. Podem ser enzimas, hormônios, pigmentos, anticorpos.

Exemplo de proteínas: hemoglobina – transporte de oxigênio; insulina – controle do nível de glicose no sangue.

Resposta do exercício 4: b

90 bases nitrogenadas = 90 nucleotídeos

1 códon = seqüência de 3 nucleotídeos

1 códon - 3 nucleotídeos X - 90 nucleotídeos

 $X = \underline{90}$ (códons) 3X = 30 códons

Resposta do exercício 5: a

Na tradução, ocorreu o encadeamento dos aminoácidos, sob o comando da informação genética presente no RNAm (mensageiro) e o transporte dos aminoácidos realizado pelos RNAt (transportador).